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We consider a special class of integral equations of the first kind with au irregular difference 
kernel of complex structure, dependent on a dimensionless parameter ,4. We construct an 
asymptotic solution of this equation for small values of X. Use of the Wiener-Hopf method 
and introduction of a class of special approximations to the Fourier kernel transform, allows 
us to perform an approximate factorization and thus bring the given problem to the numerical 
stage. 

The results obtained are used to investigate axisymmetric problems of the interaction 
between a stiff tire and the surface of au infinite elastic cylinder as well as the interaction 
between a stiff bushing and the surface of an infinite cylindrical cavity in an elastic space. 
Solutions are obtained in the form of fairly simple expressions, which coincide ssymptoti- 
tally with the corresponding solutions of [I]. Th us the method given in [I] and the method 
derived in the present paper, make possible the complete investigation of the given class of 
integral equations over the whole range of values of h+ 

1. ‘Structure of the kernel of the ,integral equation and of its ‘so- 
lution. Let us consider an integral equation of the form 

K(t) = + 1 -+e-‘U’du &y, 

(1.1) 

(1.2) 
--00 

The function L (a) s-l is assumed even, real and regular on the real axis - bo < a < m; 
moreover we assume 

35 (u) u-1 = A +- 0 (u”) aa U-P 0 (I.31 

L (u) u-1 = @.dy II +c,@j-l +c,i9 + 0 (luf-3)1, [u/-v cm fj.4) 
Using the above properties of L (a) u”r, we can show the strncture of the kernel X (t). It 

is 

K (t) = - In I t I + aa0 I t I + a30 + P(t). ogt<-J (f-5) 
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ho = 
ML(U)-l+e-” & s U aa0 = - + ml 

0 

(1.6) 

Here we used the formulae (2.6) of [l]. Next we shall pmve the following lemma. 
I, e m m a 1.1. The function F(t) of the form (1.6) belongs to the class of functions 

H,a(--2/h, 2131). I-E<a<j, E>O 
for alI 0 s 1 t 1 < CO (definition of the class of the functions Ff, a(- ,fl, 0) is given in [l]). 

P r o o f. Let us find the second derivative of F(t) given by (1.6) 

We note that the properties (1.3) and (1.4) of L (P) 1-1 imply that the integral in (1.7) 
converges uniformly for all 0 2 ( t 1 < 00, and the proof follows from this. 

Let us now turn our attention to the structure of the solution of (1.1). We shall require 
the following lemma. 

Lemma 1.2. Ify(t)EHm”(-i,i) wherea>J:whenl-c:<\tl(land 
a>OwhenO_<It~<_l-8, ~>O,then 

II@) = l ,g(Yyx, ECm(--1, I), 
-1 

P r o o f. Using the well known relation 
1 

s dt 

-1 
(t-2) l/1- =O 

we can write the integral (1.8) as 

r1(4= f +r (t) - Y (4 
-l(t - - 5) 1/l - t” 

dt 

lXi<f (l-8) 

(1.9) 

which, differentiated formally m times with respect to 1c, yields 

11(m) (2) = m! s + r(t)-r(r)-(ft-x)/1!7’(2)-. . .-(t-z)m/m!~(z)(m) 

(t - xp+1 l/l- dt (1.10) 
--1 

Using now the identities [2] 

(t - 4 y (q - 7 (3) - -g-- 7’ (2) - . . * - 

(t-x)m f 
m = s (t - ~)~--l & 

we can obtain the following estimate for the kmerator of the integrand in (1.10) 

I~(t~-~(~)-(~-~f-~If~‘(2)-...-((t-~)m-m!~fm~(~)~= 
1 (iii) 

= I 
(t - z)” 
7 h (t)‘“’ - T;(*)(m)1 -(y&z,, j (t -T)-’ lTtrn) (t) - rtrn) (z)] dz 1 < 

x 
t 

ei A (t-z)m+r + (m~lll ~(t-~)m+u-ld~=B/ t--zjm+r 

x 
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In the derivation of (1.11) we assumed, without any loss of generality, that t >, Z. 

Vext we shall prove that I1(m)(x) E C (- 1, 1). For this, it will be sufficient to show 

that the integral (1.10) converges uniformly for all x E[- l,l]. This will also justify the 

differentiation under the integral sign in (1.9). Uniform convergence of the integral (1.10) 

can be shown in a fairly straightforward manner, using the estimate (l.ll), and this proves 

the lemma. 

C o r o 1 1 a r y 1.1. If r(t) E H,,,= (-1, I), a>O, then 

12(z)= 1 
l r(t)vl--z &EC 

t-x m 
(-_1,j) 

, lxlal 

-1 

(formulation of this corollary was given in [3]). 

C o r o 1 1 a r y 1.2. If y (t) G H," (-1 + E, I), a > 0, E > 0 and y (t) 

E H,f' (--1, -1 + E), b > l/z, them 

Is (5) = i g& (-&)“‘dt E C,(-I, 11, 
1x161 

-1 
An analogous corollary exists for the integral 

I4 (5) = i g& (+g)“‘dt (1.12) 
-1 

We shall further assume that the function f(x) appearing in the right-hand side of the 

integral Eq. (1.1) belongs, at least, to HIP (- 1, l), 0 < 6 ,( 1. Then the following theorem 

(which was formulated in [1] but had some errors, now removed, in its proof), exists. 

T h e o r e m 1.1. If a solution of the integral Eq. (1.1) exists in the class of func- 

tions L (- 1, l), 1 + 6 > p > 1, 6 > 0, then for any value of X E (0, m) it will have the 

form4Qx)=(l - x2 )‘s ot (z) where o 1 (x) E, C (- 1, 1). 

P r o o f. We shall represent the integral Eq. (1.1) with the kernel given by (1.5) in the 

form of an equivalent integral equation of the second kind 

with the condition 

Assumption of the Theorem implies that r$(.z)~ Lp( -1, 1), then even more so 4(x) E 

L (- 1, 1). Then P < 00, and using the result of Lemma 1.1 we can prove, that 

J(t)= SF(+) cP(y)dyeHo”(--l, 1) 
-1 

NOW, the properties of the function f(x) given above and the Corollary 1.1, bring US to 

conclusion that 

To prove the theorem it remains to show, that 
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Let us write the inner integral of (1.15) aa 
t 

N(r)=2 cp(Y) dy--P 
s 
-1 

Then, using the Halder inequality we can prove tbat 

iv (t) E H;‘o (--I, 1), 1 f q + 1 f P = 1 

which, together with the Corollary 1.1, proves the vaIidity of (1.15) and this completes the 
proof. 

Next we shall see, whether a solution of (1.1) bounded at ona or at both ends 1; = f 1 of 

the line of contact, can be obtained. 

T h .e o r e m 1.2. ff the function f (5) (Z HIa (-4 + 8, i), CC > 0 and f (z) 

E Ei,@ (-1, -1 + E), p > ljz, a solution of (1.1) exists in the class of function0 

LP (- 1, I), 1 + 6> p > 1 and is bounded in the g-neighborhood of the point r = - 1, then 

for any hE (0, C+Y) this solution will have the form 4(x)= (1 + x)% (1 - x)-n a1 (x), where 

wp (x) EC (- 1, 1) and where the following relation holds 

The proof is analogous to that of the Theorem 1.1. We must, however, use the Corollary 
1.2 of the Lemma 1.2 and the integral Eq. 

(1.17) 

which is equivalent to (1.1) under the conditions (1.14) and (1.16). 

An analogous theorem exists when the solution of (1.1) is asaumed bounded in the E- 

neighborhood of the point s = 1. 

Theorem 1.3. If the function f (z) E HIa (-1 + E, 1 - E), CL > 0, 
E > 0; f (5) E Hf (--1, ---I + E), B > l/2; f (4 E HIY (1 - 13 I), Y > % 
a solution of (1.1) exists in the class of functions I,, (- 1, 1) and is bounded in the E- 
neighborhood of the points x ii: f 1, then for say XE (0, m) it has the form I#S(Z) = (1 - xx)” 

w,(u). Here o3 EC (- 1, 1) and the relations 

1 1 1 

p=- 
s 

t!‘(t)& 1 & -- 
s- JR=-? ?a _-l )/1-t= s [ 

cp CT) a20 sgn @ - t) + F’ (T+)]d~ 

-1 

l f’(t)& 

o=_lQ=-T _-l s 
+&j v&z i ~~~~~2~sgn(r--ti+ F’(‘G)]dt 

-1 

hold. The proof is again aualogous to that of the Theorem 1.1. Lemma 1.2 must howsvar, 
be used together with the integral Eq. 
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which is equivalent to (1.1) under the conditions (1.14) and (1.18). 

2. Method of ~eploll A. ‘Stability of the ‘solution of the integral 
equation (1.1). *dowstructloa of the class of pcvsalble approximation’s 
to ita kernel. Since under the assumptions made previously the function f(x) can be 
expanded into a Fourier series, we find that the linearity of the integral Eq. (1.1) implies 
that it is sufficient to obtain a solution to an integral equation of the following particular 

type 

J qJs (z) K ( y ) dz = Tt@nx, lxldi (2.1) 
-1 

We propose to obtain an approximate solution of (2.1) for small values of X. It was shown 
in [g] that the zeroth term of the asymptotic form of the solution for small X can be reprc 
sented as 

R(Z)= qq)+qg)-*o(;) (2.2) 
where the functions r+!~ &I) and G,,(t) are given by the following integral Eqs. 

03 

{$+(T)K(t-r)dt = ny*eTiBf, o<t<- (2.3) 
0 

co 

s 
$0(z)K(t-7)dz = n;yoe iat , 1 tI<m (2.4) 

-w 

-frt = q+,-++~, rrj = rh-l, P = h 
Salution of the integral Eq. (2.4) can be obtained using the convolution theorem for the 

integral Fourier transform, and has the form 

$0 (0 = y. V-l 09 eiBf (2.5) 

Solution of (2.3) can be obtained using the Wiener-Hopf method [4$ Koiter has shown 
in [s] that in order to bring the solution to the form suitable for computation, it is expedient 
to resort to approximate factorization, and he proposed the following approximation to the 
Fourier transform of L (a) u’l appearing in the kernel K (t) 

L’ (u) 1 & (a 
u vuSt_A’ %@ 

(pl (0) = Pa (0) = B = const) (2.6) 
. . 

where P t (u) and P (u) are even polynomials of equal degree. Authors of [6] give a more 
general approximadon of the form 

(2.7) 

which gives a high accuracy at small number N. 
In our opinion, the following, easily factorizable approximation also merits attention 

L’(u) ‘t/iqv _ 
U x2+x )/(C-iiu)(D- iu) + x Jf(C + iu) (D +- iu) + ‘c/(Ca+ u”) (D2+u”) x 
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N (u”+ D-3) N eta _ x rI (u”+&&q (x+c&p If E,“- A* X>O (2.8) 
n=i n=l 

In the number of cases it yields a more accurate structural representation of L (10 u-t, 
thus raising the accuracy of the solution. 

It is easily seenthat all approximations given by (2.6) to (2.8) satisfy the property (1.3) 
of Z, (IA) s-1; but when 1 u ) + 00, their asymptotic form is 

L* (U) u-1 = lu[-1 [I + c2*r2 + 0 (u-“)I (2.9) 

This yields the following asymptotic representation for the kernel 

K* (t> = -1n it/ +a,,* +F* (t) (O<t<cx) 

F* (t) = 0 (t” In pj) XIpIi t+ 0 (2.10) 

We shall show, how this may influence the accuracy of the asymptotic solution of (1.1) 
at small values of A. We shall consider (Ll), (1.5) and an integral Eq. of the form 

(2.11) I 

f 
--_I 

‘P&)[-ln~+b,$--9 +b,,+G(~))it=ng(s), ,,,,; 
We shall assume that, similarly to (1.1) and (1.51, we have 

g (z) fS Rx@ t--1, l), P > 0; G (t) E HI= (-2 i IL, 2 I A) 
1 -&<a (1, E>O 

The integral Eq. (2.11) ehall be called perturbed with respect to (1.1) and (1.51, if the 

Let us compare Formulas (1.4) to (1.6) with (2.9) and (2.101. We can easily see that the 

absence of the term Iul-t within the square bracket in (2.9) leads to the absence of the 
term 1 t 1 in (2.101. Th us an inaccuracy occurring in the behavior of the approximating func- 

tiont*(a)H as] ) II + 00 would lead to conclusion that the function K * (t) + In 1 t 1 is smoo- 
ther than K (t) + In I t (. 

following conditions hold 

l%l - bzol < E* I% - &I =G 8 

II f (z) - g @) II&” (_1,1) \( 8, IIF(~)--((~)IIH~‘(-~/~,~/A)~,< (2.42) 

The norm on the space H 1 ‘(- /& fl) will be given by 

11 f (4 llEp(-B. B) = maxIf@) +maxlf’@)l+ 

(2.13) 

It can easily be shown that H a (- fi, 6) 

k 

is a complete, linear, normed space. From the 
definition of the norm on Hla(- , fi) it follows that, if 

Ilf (4 II F$*‘X(-1,1) < E, 
then 

II f (5) Ilc (-X,1) 6 8, IIf'(~)llc(-*J) Q 8 f If' (t) - f' (4 I < el t - $1’ (2.W 
We shall now prove the following theorem. 
‘I’ h e o r e m 2.1. If solutions exist in the class of functions L (- 1, I), 1 + 6> p > 

> 1, 8 > 0 for both, the integral Eq. (1.1) and (1.6) and another integra f equation perturbed 
with respect to the former, then the estimate 

Ii ‘P (2) - ~(2) Ilc(-1,11< Ae. (1 - s2)-“‘, A = const (2.15) 
holds for any h e (0, 00 1. 

P r o o f. Let us represent the integral Eq. (2.111 by an equivalent integral equation 
of the second kind analogous to (1.13) and (1.14). The difference between the obtained 
equation and (1.13) will be 
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1 
-2% %osgn(t--yyf j- PI’ ‘p Iv1 dY (z-&3) 

where the term P - F: is replaced. z accordance with (1.14), by 

The follawiag notation is al’sa usid in (2,16) and (2.17) 

(1 - +-“Z 4 (z) 2 ‘p (I) - ‘Pi (6)” Cao = a30 - 405 cao = 630 - ki 

A f4 = f (4 - g (4 r, (t) = F (t) - G (t) f2.M) 

We shall now investigate the integral operator sppearkg in the left band side of &.f6)= 
From the Theorem 1.1 it follows that B+%(X) E C (- I, 1). therefore takiag into account the 
fact that G(t) E H 1a(- Z/X t Z/A), we easily arrive at the conclusion that the following 

function of y exists in t (- 1, 1) 

the order of integration in tbe third term of the left-brand 
the second term. Consequently we cart rewrite (2.16) 8s 

9(4-l- \ rp(Y)M(Y, 4dY=r.P), 
--I 

Where 
t 

1. 
1 

- In2J.++f@ S[ 
ha yY’ +c(Y)] g&..} (2.20) 

-I 

the integra’l 
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as a function of z and ia, at least, bounded in y. The latter csu sadly be shown. Finally 
let US consider the integral 

’ pT=S s t-x sgn(r-y)dt=2xarcsin y-2 )/I- ys+ 

-1 

We easily see that its only singularity is logarithmic, at z ec: y # f 1. 
Thus the kernel M I$, x) has a singularity of the type (1 - y 2)-” at y = f 1 and a loga- 

rithmic singularity at z s y # f 1. At other values of z and y it is, at least, bounded. 
Let us now perform the variable substitution y = ain.7, x = sin 8 in (2.19). This will 

yield au integral equation whose kernel will retain only the logarithmic singularity and 
which, consequently, is the Ftedholm equation [S]. Then, by the Lemma of [9] and under 
the assumption that (2.19) has a unique solution, we have 

1 Ip (sin 0) 1 = I * (2) 1 < I3 I y (4 1, R = WI& (2.2i) 

Let us now estimate y(z). Taking into account (2.12) we easily find that f y(z)1 < ; B 1. 
Insetting this into (2.21), we obtain (2.15). We also note that 

1 I’ - P, 1 < eD1, D, = const (2.22) 

follows from (2.15), and this completes the proof. 
The following theorems can also be proved in the similar manner. 
T h e o t e m 2.2. If solutions exist in the class of fuuctiona L, (- 1, I)* l+ 6> p > 

> 1 for both, the integral Eqs. (1.1) and (1.5) and another integral equation perturbed with 
respect to the former, if these solutions ate bounded in the E-neighborhood of the point 
x= - 1 and if the relation (1.16) holds for each of them, then the following estimate 

IIT (4 - 01 (.z)IfC(_l,l) < d (1 - 4--"2, A=corl& (2.23) 
hoIda for any X (5 (0, 00 ). 

If we ssaume that both of the above solutions are bounded in the &-neighborhood of the 
point x = 1, then we have the following analogous theorem. 

T h e o r e m 2.3. If a solution of the integral Eqa. (1.1) and (1.5) and s solution of 
another integral equation perturbed with respect to the former, both exist in the class of 
functions L, (- 1, l), 1 + 8 > p > 1, are bounded in the e-neighborhood of the points z = f 1 
and if relations (1.18) hold for both solutions, then the estimate 

llrp (4 - 91 b%r~(_*,*)d &A, A = con& (2.24) 
holds for any h E(O, oo). 

Thus, when the conditions (2.12) hold, the Theorems 2.1 to 2.3 guarantee that the ap 
proximate solution of (1.1) with the approximated kernel will deviate little from the exact 
solution. It can, however, be easily seen that the function K * (t) + In 1 t 1 of the form of 
(2.10) and obtained from one of the approximate expressions (2.6) to (2.8) does not, in gener- 
af, satisfy the first condition of (2.12). Therefore, when we USC the approximations (2.6) to 
(2.8) to obtain an approximate solution to (1.1) for small h, we cannot be absolutely certain 
that the solution obtained will deviate from the exact solution by only a small amount. In- 
deed, numerical analysis of examples baaed on the approximation (2.7) for small A, gave a 
poor agreement with results known to be practically exact and obtained by other methods. 

Thus the behavior of the function L (u) u-r as 1 u 1 + - and the theorems given above, 
imply the necessity of constructing approximations other than (2.6) to (2.8). 

At this stage we note that we can always represent L (u) $1 aa a sum of two functions 

L (24) u-1 = L, (24) u-1 + L, (u) u-l 
L, (u) u-1 = 0.5 lul-1 [L (lu') +L (-IuI)l 
L, (u) u-1 = 0.5 p&l-" [L (lul) -L (-lul)l 

and, when 1 u I-, bo, we obviously have 

(2.25) 
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L, (u) u-l = ful-’ II + c2u-2 + 0 (u-4)1 
L, (u) u-l = lu 1-l [Cl lul-’ + c3 lul-3 + 0 (Iul-b)l 

This suggests at once, that L, (u) li’ and L, (II) n-l could be approximated separately. 
One of the approximations given by (2.6) to (2.8) 
while 

will, obviously, be suitable for L t (u) dl, 

(2.26) 

should approximate the other function fairly well. 
We can do it in a slightly different way, namely by approximating the whole function 

L (u) u’l first, using one of the expressions (2.6) to (2.8). This will not be very accurate 
even at large N, since, as we have already said, the functions (2.6) to (2.8) do not des- 
cribe the behavior of L (u) U-I completely, Next step will consist of approximating the dif- 
ference L (u) u-’ - L * (u) u* x by means of an expression of the form (2.26). Such an approach 
appears to be suitable when the Wiener-Hopf integral Eq. (2.3) is solved by the method of 
successive approximations (see Section 3) and this method converges at the rate, which is 
inversely proportional to the value of 

max IL (u) u-1 - L” (u) u-l/ 
Finally, we shall mention yet another method of approximating the function L (u) 11-l: 

first we approximate L (u) u” using one of the expressions (2.6) to (2.8), and we follow it 
by approximating the ratio L (u)/I, * (u) with a function of the form exp[c ,M (u)f where M(u) 
is a function analogous to (2.6) to (2.8). We easily see that the approximation constructed 
in this manner will satisfy the conditions (1.3) and (1.4). 

3. Solution of the Wiener-Hopf integral equation. Without going into 
great detail, we shall represent the integral Eq. (2.3) by an equivalent functional equation 

f4l 

where 

a’+ @) L (a) CC-’ :--= F, (a) + E- (c&) (3.1) 

Cc 

00 

e, (t) eia+dz, e+ (2) = 23% 
s 

**K(z--z)dz (3.2) 
---co 0 

O>x>-oa 

Let us now consider the approximate solution of (3.1). W~ting L (u) u’l in the form of 
(2.25) and taking (2.1) and (2.28) into account, we obtain 

@+ (a) L,* (a) et-l T E @+ (ol) L,* (a) a-l = F+ (a) + Ii’_ (ix), e= 1 (3.2) 
where the parameter E is brought in for convenience. Taking into account the fact that 
max If, 1 + (II) u-t1 is small compared with L * (u) u-t (we can show this by approximating 
the function L (u) u -* as shown insection 2 , we shall seek the solution of (3.2) in the form 3 
(see e.g. 141, Sections 4 and 5) 

CD+ (a) = CI)?’ + Et@ + .&-I)~) f . . * + ETDy) (3.3) 
Inserting the latter into, (3.2) and comparing the coefficients of like powers of E, we 

obtain the following system of functional equations 

@!“’ (a) L,* (a) 01-l = F+ (a) + E_ (a) (3.4) 

a$) (CL) L,* (a) cz-1 -j- @f-l) (ol) L,* (cz) CL-1 == 0 (3.5) 
In view of the fact that +q(s) haa, in general (see Theorem Ll), a singularity of the 

type (X - x z)-n at the ends, we shall, taking into account (2.2), seek the sohrtion of (2.3) 



Solution of integrd tquationr of mixed probfemr Ill 

(3.7) 

$3. (z) = is-1 (z” + By. In ((iB)-1 [z + (3 + By]) (3.43) 

g_ (z) = - in-1 (9 + By/~ In {(--a)-~ [T f (9 + B’d) ‘$1) 
we cnn easily obtain an expression for (i+(a) by writing the integral entering (3.7) aa two 
fnteturls, one of them containing only the poles of tbe integaud function corresponding to 
ImT > c, and the other the poles corresponding to Im’T < c. Further, subatituting~(3.?) into 
(3.6) and solving the resulting functional equation, we find’~~2)~~~ etcAh4 subeeqttent 
terms of (3.3) ere more difficult to obtain, since difficulties are encountered in calculating 
integrals of the type (3,?); in practice~$t) (CC) i s often found sufficiently accurate, 

Let na now construct a solution of (&‘I), based on the approximation delrcribed in ‘Seetfon 
2. We shell write the function t (u) u-1 in the form 

Eq. (3.1) can be writteu ae 

4, (ol) L* (+rl exp [c,M (a)1 = P, (a) + E_ (a) 
Solution of this equation wfIi be 

(3.9) 

Function &+ (a) is tasiiy obtained, if we taku into account (3.8) and tits note concernfng 
the computation of the integral entering (3.7). Although the formula (3.10) gfvoa a cloued 
solution of (3.9) we fixtd, that, to obtain t&*(T) we muat perform a complicated contour ints- 
gration, using approxfmata methods. The computation Bfmplifiea if, taking into acconnt the 
propertierr of M (u) given at the end of Section 2, we: write (3.10) in tbe form 

aS, (a) = i (;Zx)+~* (Q r B)-l [L* (a) a-1l+1 [f C* (f P) P1lI’ X 

We easily see that (3.X1) fs analogous to (3.3) with one exception, - tkrt in (3.1x), 8l1 
*;’ (a f UC) already de&ted. 

1. ‘Ex~MI~~Hs. We sItaX consider the problems on tit4 fnterection between a #tiff tire 



on a cylindrical surface (Problem a)(*)* 8nd between a stiff bushing and the surface of a 
cylindrical cavity in an elastic space (Probfem b), &‘e &aft assume that f&don is &mnt 

within :he area of elastic contact, and, that there is no load o&side this area. Using opera- 
tional methods we can reduce these problems to the determination of the contact pressure 
q (z) for the following inteQ,ral equation [ 11 

Here a denotes the s~m~~widtb of the tire (bashing), R irit the radios of the cylinder 
(cavity) , y denotes the depth of penetration of the tire (b~bfng) into the surface of the 
cylinder (cavity) and L (a) I’~ is defined by Form&s (2.3) or (2.4) of 113. 

To solve the problems, we shall use L (8) u”E as givea by (2.25), putting in the latter 

.h 04) fiv ( uz + 0") h(u) c~U2(~2+ @) 

-= (U"+Ca)(Ux+E") 9 U ---y---s (u2+ C*)(IJ~+E*)(~~+ es) 

Using Formulas (3.6), (3.7) and (3.2) we obtain 

$*‘Q’ (8) = &4-‘f* @P ~3xnr)--” + A-*‘* erf Y’E - rae-= erf F(B - D) t f 

*:j ($1 == c&A+ (-- So (t) - fl frtt $a+ f0, 0 4- % (e> Jo* (e, t) I_ ne +t erf y’{S - L?) t _t 
f 

(4.2) 

In tho above formulas K, (2) is the MacDonald function, while the fnnctiaas g,(ix) and 
Y!*(t) have the form 

fi* (&) S n-1 (@ - zz)-“/” In ES-1 [z + (IP -rV*] = g_ (- ix) 9* (i) = $2) 0) -i- $2 P? 

Approximating the function L C) rb-’ with an error not exceeding 5% over the whole in- 
terval of variation of u E CO, op ) we find, that for the Problem a we have: B = 1, a = 1.0354, 
C = 1.1321, E = 0.9640, c 1 = 0.4, 6= - 0,4, e = 1.~41, whi& for the Probiam b we bavei 
B = Ir D &r 1.0354, C 5 1.264, E = 0.9694, c1 = - 0.4 and d = (r = 0. 

*) ‘&is problem for a semi-infinite tire wae considered in [ 10 and 111, and for the finite 
tire - in fl2 and 131. Complete solntfon wasI however, not obtained. 
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The Table gives, for comparison ur oses, some values of #b*(O)- c$(O) 6-1, +*(O.Sf = 
= $ (0.5) 6” and of f(l) = lim [ v++ I - x c# (x) 8-l as z + I obtained for A= 2 from Formu- 

las (4.1), (4.2) and (2.2), (2.5) of the present paper, and from Formulas (1.14) to (1.18) and 
(2.121, (2.13) of (lj. 

TABLE 
T 

!_ 

a 

b 

I rp* 10) 

(1.14)-(1.18) [l] ;*;;; 
(2.12) [I] ‘ 

(4.11, (4.21, 
(2.26, (2.5) 1.222 

(1.14)-(1.18) [I] ;.;iJ; 
(2.13) [1] . 

(4.11, (4.2), 
(2.21, (2.5) 

0.936 

Q’ (0,5) \ f ft) 

1.24?41 0.923 
1.304 0.898 

1.308 0.910 

1.025 0.666 
1.018 0.697 

1.025 0.668 

From these data we can infer, that the solution obtained in the present paper gives a good 
agreement at A== 2, and the method implies that its accuracy will increase with decreasing 
h..We can therefore conclude, that this solution and the solution given in [l], make possi- 
ble the investigation of the given class of integral equations over the whole range of values 
ofh. 
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